Repeated consecutive values of group columns will be used to define the title of the groups and will be added as a row title.
Examples
# as_grouped_data -----
library(data.table)
CO2 <- CO2
setDT(CO2)
CO2$conc <- as.integer(CO2$conc)
data_co2 <- dcast(CO2, Treatment + conc ~ Type,
value.var = "uptake", fun.aggregate = mean
)
data_co2
#> Key: <Treatment, conc>
#> Treatment conc Quebec Mississippi
#> <fctr> <int> <num> <num>
#> 1: nonchilled 95 15.26667 11.30000
#> 2: nonchilled 175 30.03333 20.20000
#> 3: nonchilled 250 37.40000 27.53333
#> 4: nonchilled 350 40.36667 29.90000
#> 5: nonchilled 500 39.60000 30.60000
#> 6: nonchilled 675 41.50000 30.53333
#> 7: nonchilled 1000 43.16667 31.60000
#> 8: chilled 95 12.86667 9.60000
#> 9: chilled 175 24.13333 14.76667
#> 10: chilled 250 34.46667 16.10000
#> 11: chilled 350 35.80000 16.60000
#> 12: chilled 500 36.66667 16.63333
#> 13: chilled 675 37.50000 18.26667
#> 14: chilled 1000 40.83333 18.73333
data_co2 <- as_grouped_data(x = data_co2, groups = c("Treatment"))
data_co2
#> Treatment conc Quebec Mississippi
#> 1 nonchilled NA NA NA
#> 2 <NA> 95 15.26667 11.30000
#> 3 <NA> 175 30.03333 20.20000
#> 4 <NA> 250 37.40000 27.53333
#> 5 <NA> 350 40.36667 29.90000
#> 6 <NA> 500 39.60000 30.60000
#> 7 <NA> 675 41.50000 30.53333
#> 8 <NA> 1000 43.16667 31.60000
#> 9 chilled NA NA NA
#> 10 <NA> 95 12.86667 9.60000
#> 11 <NA> 175 24.13333 14.76667
#> 12 <NA> 250 34.46667 16.10000
#> 13 <NA> 350 35.80000 16.60000
#> 14 <NA> 500 36.66667 16.63333
#> 15 <NA> 675 37.50000 18.26667
#> 16 <NA> 1000 40.83333 18.73333